Dakota Digital

SGI-5 rev. A UNIVERSAL SIGNAL INTERFACE UNIT

This unit can recalibrate a speedometer signal or convert a speed signal from one type to another type. The different functions it can perform are as follows:

- 1. Recalibrate a high speed (64,000ppm 250,000ppm) signal for an OEM speedometer or engine/transmission computer. **Do not use this unit to adjust a signal going to an antilock braking system.**
- 2. Recalibrate a low speed (8000ppm 4000ppm) signal for an OEM or aftermarket speedometer or fuel injection computer.
- 3. Convert a high-speed signal found on newer GM transmissions down to a low speed signal to run a speedometer, cruise control, or fuel injection computer.
- 4. Convert an 8000ppm signal from an aftermarket signal generator to a 4000ppm or 2000ppm to run an OEM cruise control or fuel injection computer.
- 5. Convert a 16000ppm signal from a VDO Hall Effect signal generator to an 8000ppm, 4000ppm, or 2000ppm to run a cruise control or fuel injection computer.
- 6. Convert a 4000ppm signal from an OEM transmission speed sensor or ECM output to an 8000ppm signal for an aftermarket speedometer.
- 7. Convert a signal from a flywheel gear-tooth sensor to an ignition tachometer signal (diesel tachometer application).

Setup tips:

- If, without the interface, your speedometer reads much too fast, then you will most likely need to use application 3.
- If, without the interface, your speedometer reads about ½ what it should, then you will most likely need to use application 6.
- If your speedometer reads, but is just off, you will probably need application 1 or 2.

Each of the different applications will be described in detail in the following sections. Here is a general overview of the unit functions.

The unit has 10 switches on it for setting the calibration and signal type.

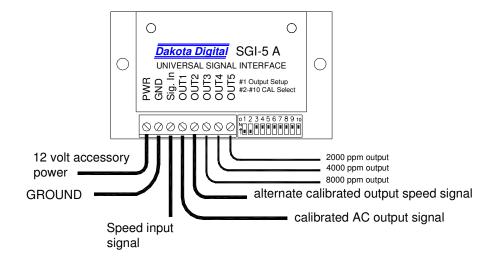
Switch #	OFF	ON
1	OUT3/4/5 set for high speed in	OUT3/4/5 set for low speed in
2	Slower output	Faster output
3-10	Calibration setting (see calibration table)

The unit has 5 different outputs for speed signals. Some of the outputs are AC (a voltage output that goes above and below ground) and some are open collector (a switch that closes to ground). The output functions are as follows:

SW #1	Sig In	OUT1	OUT2	OUT3	OUT4	OUT5
OFF	64k-256k	128k AC	128k oc	8000 AC	4000 oc	2000 oc
ON	4k-16k	8000 AC	8000 oc	4000 AC	4000 oc	2000 oc

Connect the PWR terminal to 12V accessory, GND terminal to ground.

Recalibrate a high speed (64,000ppm – 250,000ppm) signal for an OEM speedometer or engine/transmission computer. **Do not use this unit to adjust a signal going to an anti-lock braking system.** Anti-lock braking systems may not operate correctly or behave erratically due to the signal processing done to recalibrate the speed signal.


These speed sensors have a two-pin connector that plugs into the transmission or transfer case. One of the wires will be a ground and the other will be the signal wire. The wires will usually go up under the dash and into the speedometer, vehicle speed buffer, or engine/transmission computer. The signal wire will need to be cut so the SGI-5 can recalibrate it. The sensor side of the wire will go to the SIG IN terminal. The speedometer or buffer side will go to the OUT1 terminal. If the speedometer does not operate correctly after installation of the SGI-5 you may need to switch to OUT2 instead of OUT1. Connect the PWR terminal to a 12-volt accessory wire and connect the GND terminal to a good ground location.

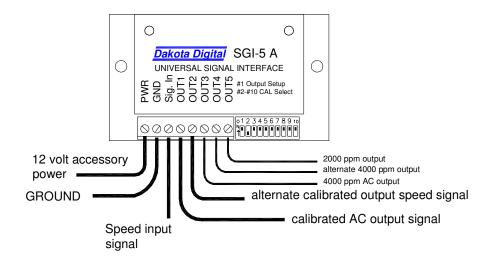
Begin with the switches as follows and then determine how far off the calibration is.

1	2	3	4	5	6	7	8	9	10			
OFF	OFF	ON										

You can determine how far the speedometer is off by having it checked with radar or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, use the following equation and then look up the switch setting in the table.

Switches #2 - #10 set the calibration adjustment. As an example, if you are following a vehicle going at 55 mph and your speedometer shows 60 mph, then:

Recalibrate a low speed (8000ppm – 4000ppm) signal for an OEM or aftermarket speedometer or fuel injection computer.


Either two wire or three wire sensors can be recalibrated with this unit. Two wire sensors will typically have one wire as a ground and the other as the signal. Three wire sensors will have an additional power wire. You must first determine which wire is the signal. The signal wire will need to be cut so the SGI-5 can recalibrate it. The sensor side of the wire will go to the SIG IN terminal. The speedometer or computer side will go to the OUT1 terminal. If the speedometer does not operate correctly after installation of the SGI-5 you may need to switch to OUT2 instead of OUT1. Connect the PWR terminal to a 12-volt accessory wire and connect the GND terminal to a good ground location.

Begin with the switches as follows and then determine how far of the calibration is.

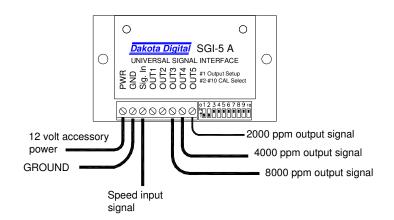
1	2	3	4	5	6	7	8	9	10		
ON	OFF	ON									

You can determine how far the speedometer is off by having it checked with radar or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, use the following equation and then look up the switch setting in the table.

Switches #2 - #10 set the calibration adjustment. As an example, if you are following a vehicle going at 55 mph and your speedometer shows 60 mph, then:

Convert a high-speed signal found on newer GM transmissions down to a low speed signal to run a speedometer, cruise control, or fuel injection computer.

These speed sensors have a two-pin connector on the transmission or transfer case. One of the pins will be a ground and the other will be the signal. The ground pin will go to the GND terminal along with the ground wire. The signal pin will go to the SIG IN terminal. It is best to twist the signal and ground wires from the sensor around each other. This helps eliminate any electrical interference. If nothing else is connected to the speed sensor it does not matter which pin is used as the ground. Connect the PWR terminal to accessory power. The output connections will depend on your particular application. Here are some typical examples:


OUT3, 8000ppm AC: most aftermarket speedometers and cruise controls OUT4, 4000ppm oc: most TPI computers and some OEM cruise controls most TBI computers and some OEM cruise controls

Begin with the switches as follows and then determine how far off the calibration is. If you are using an adjustable speedometer, then you can skip the SGI-5 calibration and use the speedometer's calibration routine.

	1	2	3	4	5	6	7	8	9	10		
Ī	OFF	OFF	ON									

You can determine how far the speedometer is off by having it checked with radar or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, use the following equation and then look up the switch setting in the table.

Switches #2 - #10 set the calibration adjustment. As an example, if you are following a vehicle going at 55 mph and your speedometer shows 60 mph, then:

Convert an 8000ppm signal from an aftermarket signal generator to a 4000ppm or 2000ppm to run an OEM cruise control or fuel injection computer.

Either two wire or three wire sensors can be recalibrated with this unit. Two wire sensors will typically have one wire as a ground and the other as the signal. Three wire sensors will have an additional power wire. You must first determine which wire is the signal. The signal wire will be tapped into so the SGI-5 can read it. The sensor signal wire will go to the SIG IN terminal. Connect the PWR terminal to a 12-volt accessory wire and connect the GND terminal to a good ground location. If nothing else is connected to a two wire sensor, then connect one wire to the GND terminal also. The output connections will depend on your particular application. Here are some typical examples:

OUT3, 4000ppm AC: most TPI computers and some OEM cruise controls use this if OUT3 does not provide a good signal most TBI computers and some OEM cruise controls

Begin with the switches as follows. You may not need to change the calibration from this initial setting. If you want to adjust the calibration ratio, see application #2.

1	2	3	4	5	6	7	8	9	10			
ON	OFF	ON										

APPLICATION #5

Convert a 16000ppm signal from a Hall Effect VDO signal generator to 8000ppm, 4000ppm, or 2000ppm to run a cruise control or fuel injection computer.

The Hall Effect sensor will have three wires. The white wire is the signal. The signal wire will be tapped into so the SGI-5 can read it. The sensor signal wire will go to the SIG IN terminal. Connect the PWR terminal to a 12-volt accessory wire and connect the GND terminal to a good ground location. The output connections will depend on your particular application. Here are some typical examples:

OUT1, 8000ppm AC: most aftermarket cruise controls

OUT3, 4000ppm AC: most TPI computers and some OEM cruise controls use this if OUT3 does not provide a good signal most TBI computers and some OEM cruise controls

Set the switches as follows.

1	2	3	4	5	6	7	8	9	10
ON	OFF	OFF	ON						

Convert a 4000ppm signal from an OEM transmission speed sensor or ECM output to an 8000ppm signal for an aftermarket speedometer.

The speed sensors have a two-pin connector on the transmission or transfer case. One of the pins will be a ground and the other will be the signal. The ground pin will go the GND terminal along with the ground wire. The signal pin will go to the SIG IN terminal. It is best to twist the signal and ground wires from the sensor around each other. This helps eliminate any electrical interference. If nothing else is connected to the speed sensor it does not matter which pin is used as the ground. If you are picking up a signal coming out of the ECM there will be only one wire to the SIG IN. Connect the PWR terminal to accessory power and the GND terminal to ground. Connect OUT1 to your aftermarket electric speedometer.

Set the switches as follows. Any calibration adjustment should be done at the speedometer.

1	2	3	4	5	6	7	8	9	10
ON	ON	OFF	ON						

APPLICATION #7

Convert a signal from a flywheel gear-tooth sensor to an ignition tachometer signal (diesel tachometer application).

For using a standard 4-6-8 cylinder tachometer on a diesel engine, the SGI-5 can convert a flywheel sensor signal into an 8-cylinder gas ignition signal. Calibration is accomplished by counting the number of teeth on the flywheel or using another tachometer as a reference. The number of teeth are listed in the calibration table under the heading "tach". When switch #2 is ON, the tooth count is divided by 4. This will cover from 32 to 127 teeth. An inductive, gear-tooth sensor such as VDO part

#340 020 should be mounted so the teeth pass by the end of the sensor. The GND terminal on the SGI-5 should be connected to a good ground as well as to one of the terminals on the gear-tooth sensor. The SIG IN terminal will connect to the other terminal. Connect the PWR terminal to 12V accessory power. OUT4 will provide the signal to the tachometer. Set the programming switches as follows:

	•								
1	2	3	4	5	6	7	8	9	10
OFF	OFF			See	calibr	ation t	able		

If your tachometer does not show any reading after installing the SGI-5, use a voltmeter to check the voltage at OUT4 with it connected to the tachometer and the engine running. Once you have done this, contact a Dakota Digital technical service representative for assistance.

An "N" switch value represents an ON position. A "F" switch value represents an OFF position.

Cal Hi represents switch #2 ON. Cal Lo represents switch #2 OFF. Tach column is with switch #2 OFF.

# #	#	#	# 7	#	#	#	Cal Hi	Cal	tach	#	#	# 5		# # 7 8			Cal Hi	Cal	tach	#	#	#	#	# #	#		Cal Hi	Cal	tach			# #	‡ ‡	# #			Cal Hi	Cal	tach
3 4	5	6	1	8	9	0		Lo		3	4	5	6	7 8	9	1 0		Lo		3	4	5	6	7 8	9	0		Lo		3	4	5 6	,	7 8	9	0		Lo	
ΝN	_	_				Ν	4.000	1.000	128					N N	_			0.667	192		_			N N	_	_		0.500	256	F		N N	_	_	_	_		0.333	384
NN	_	N			N	F	3.969	0.992	129	_			_	N N	_	_	2.653	0.663	193	F	_	N		N N	_	_	1.984	0.496	258	-		N N	_	N N	_	l F	1.326	0.332	386
NN	_	N			_	N F	3.938	0.985	130	_		_	_	N N	-	_	2.639	0.660	194 195		_	N	_	1 N	_	_	1.969	0.492	260 262		_	1 N	_	N N	_	N F	1.320	0.330	388
-	I N	_		_	_	N	3.879	0.970	132			_	_	N F	_	N	2.612	0.653	196	F	_	N	_	N F	_	_		0.485	264		_	N N	_	N F	_	1 N	1.306	0.327	392
ΝN	I N	Ν	_	_	_	F	3.850	0.962	133	Ν	-	Ν	_	N F	_	F	2.599	0.650	197	F	Ν	N	_	N F	_	l F	1.925	0.481	266	F	F	N N	_	N F	_	l F	1.299	0.325	394
ΝN	I N	Ν	Ν	F	F	Ν	3.821	0.955	134	Ν	F	Ν	N	N F	F	Ν	2.586	0.646	198	F	Ν	Ν	Ν	N F	F	N	1.910	0.478	268	F	F	ΝN	1 1	N F	F	N	1.293	0.323	396
ΝN	_	Ν		_		F	3.793	0.948	135	_			_	N F	_	_	2.573	0.643	199	F	_	Ν		N F	_	_	1.896	0.474	270	-		N N	_	N F	_	_	1.286	0.322	398
	I N	_		_	N	_	3.765	0.941	136	_		N	_	FN	_	N	2.560	0.640	200	F	_			FN	_	_		0.471	272			N N	_	_	_	1 N	1.280	0.320	400
NN	I N	N			• •	F N	3.737 3.710	0.934	137 138	_		_	_	F N	_	_	2.547 2.535	0.637	201	F	_	N		F N	_	_	1.869	0.467	274 276	-		1 N	_	F N	I N	_	1.274	0.318	402 404
NN		N		_	_	F	3.683	0.921	139	_		_	_	FN	_	_	2.522	0.631	203	F	_	N	_	FN	_	_	1.842	0.460	278		_	N N	_	F N	_	_	1.261	0.317	406
	I N	_		_	_	N	3.657	0.914	140	_		_	_	F F	_	_	2.510	0.627	204	F	_		_	F F	_	1 N		0.457	280	F	F	N N	_	F F	_	l N	1.255	0.314	408
ΝN	I N	Ν	F	F	Ν	F	3.631	0.908	141	Ν	F	Ν	N	F F	N	F	2.498	0.624	205	F	Ν	Ν	Ν	F F	. N	l F	1.816	0.454	282	F	F	N N	J F	F F	ı	l F	1.249	0.312	410
-	I N	_		_		Ν	3.606	0.901	142	_			_	F F	_	_	2.485	0.621	206	F	_	Ν		F F	_	_		0.451	284			N N	_	F F	_	_	1.243	0.311	412
NN	_	N	-	_	_	F	3.580	0.895	143			_	_	FF	_	_	2.473	0.618	207	F	_	N		F F	_	_	1.790	0.448	286	-		N N	_	FF	_	_	1.237	0.309	414
NN	I N	F		_	_	N F	3.556 3.531	0.889	144 145	_		_	_	N N	_	_	2.462	0.615	208	F	_	N	_	1 N	_	_	1.778 1.766	0.444	288 290		_	N F	_	N N	_	N N F	1.231	0.308	416 418
\vdash	I N	_	-		_	N	3.507	0.877	146			_	_	N N	_	_	2.438	0.612	210	F	_	N	_	N N	_	_		0.441	292	-		N F	_	_	l F		1.219	0.305	420
ΝN	_	F		_	_	F	3.483	0.871	147	_		_	_	N N	_	_	2.427	0.607	211	F	_	N	_	N N	_	_	1.741	0.435	294		_	N F	_	N N	_	_	1.213	0.303	422
	I N	_		_	Ν	Ν	3.459	0.865	148	Ν		Ν	_	N F	N	Ν	2.415	0.604	212	F	Ν	Ν		N F	_	l N		0.432	296			N F	_	N F	_	l N	1.208	0.302	424
ΝN	_	F			• •	F	3.436	0.859	149	_			_	N F	_	_	2.404	0.601	213	F	_	N		N F	_	_	1.718	0.430	298	-		N F	_	N F	_	_	1.202	0.300	426
NN	_	F		_		N F	3.413	0.853	150	_			_	N F	_	_	2.393	0.598	214	F	_	N		N F	_	_		0.427	300		_	N F	_	N F	_	_	1.196	0.299	428
NN	_	F	-	_	_	N	3.391	0.848	151 152	_			_	N F	_	_	2.381	0.595	215 216	F	_	N	_	N F	_	_	1.695 1.684	0.424	302 304	-		N F	_	N F F N	F I N	_	1.191	0.298	430
NN	_	F			_	F	3.346	0.837	153	_		_	_	FN	_	_	2.359	0.590	217	F	_	N	_	FN	_	_	1.673	0.418	306		_	N F	_	F N	_	_	1.180	0.295	434
ΝN	_	F	-		_	N	3.325	0.831	154	N		_	F	F N	-	_	2.349	0.587	218	F	_	Ν	_	F N	_	N		0.416	308	F	F	N F	_	FN	_	_	1.174	0.294	436
ΝN	I N	F	F	Ν	F	F	3.303	0.826	155	Ν	F	Ν	F	F N	F	F	2.338	0.584	219	F	Ν	Ν	F	FΝ	l F	F	1.652	0.413	310	F	F	N F	: F	FΝ	I F	F	1.169	0.292	438
	I N	_		_	Ν	_	3.282	0.821	156	_			_	F F	_	Ν	2.327	0.582	220	F	_			F F	_	_		0.410	312			N F	_	F F	_	l N	1.164	0.291	440
NN	_	F			• •	F	3.261	0.815	157				_	FF	_	_	2.317	0.579	221	F	_	N		FF	_	_	1.631	0.408	314	-		N F	_	FF	_	_	1.158	0.290	442
NN	I N	F		_	_	N F	3.241	0.810	158 159	_		_	_	F F	_	_	2.306 2.296	0.577	222	F	_	N		F F	_	_	1.620 1.610	0.405	316 318		_	N F	_	F F	_	_	1.153	0.288	444
\vdash	l F	_	_	_	_	N	3.200	0.800	160	_		_	_	N N	_	_	2.286	0.571	224	F	_	F	_	N N	_	_		0.400	320	-	_	FN	_	_	_	1 N	1.143	0.286	448
ΝN	I F	Ν	N	_	_	F	3.180	0.795	161	Ν	F	F	_	N N	Ν	F	2.276	0.569	225	F	Ν	F	_	ΝN	1 1	l F	1.590	0.398	322	F	F	FN	_	N N	I N	l F	1.138	0.284	450
ΝN	ΙF	_		_		Ν	3.160	0.790	162	Ν			_	N N	_	_	2.265	0.566	226	F	Ν	F		ΝN	l F	N	1.580	0.395	324			FN	_	N N	_	_	1.133	0.283	452
ΝN	_	_	-	_	_	F	3.141	0.785	163				_	N N	_	_	2.256	0.564	227	F	_	F		N N	_	_	1.571	0.393	326	-		F N	_	N N	_	_	1.128	0.282	454
\vdash	l F	N		_	_	N F	3.122	0.780	164	_		_	_	N F	_	_	2.246	0.561	228 229	F	_	F	_	N F	_	_		0.390	328			F N	_	N F	_	N N F	1.123	0.281	456
\vdash	l F		-		_	r N	3.103	0.776	165 166			_	_	N F	_	_	2.236	0.559	230	F	_	F	_	N F	_	_	1.552 1.542	0.388	330 332	-		FN	_	N F	_		1.118	0.279	458 460
N N	_	N		_	_	F	3.066	0.766	167	_	F	_	_	N F	_	_	2.216	0.554	231	F	_	F	_	N F	_	_	1.533	0.383	334		_	F N	_	N F	_	_	1.108	0.277	462
ΝN	I F	Ν	F	Ν	Ν	Ν	3.048	0.762	168	Ν	F	F	N	FN	Ν	Ν	2.207	0.552	232	F	Ν	F	Ν	FN	1 1	1 N		0.381	336	F	F	FN	J F	FN	I N	l N	1.103	0.276	464
ΝN	_	N	-		• •	F	3.030	0.757	169		F		_	F N	_	F	2.197	0.549	233	F	_	F		F N	_	_	1.515	0.379	338	-		F N	_	F N	_		1.099	0.275	466
ΝN	_	N		_		N	3.012	0.753	170	_	F	_	_	F N	_	N	2.188	0.547	234	F	_	F		FN	_	_		0.376	340			FN	_	F N	_	_	1.094	0.274	468
NN	l F	N N		_	_	F N	2.994	0.749	171 172		F	_	_	F F	_		2.179	0.545	235 236	F	_	F		F F	_	_	1.497 1.488	0.374	342 344	-	-	F N	_	F N	_	_	1.089	0.272	470 472
	l F	_	_		_	F	2.977	0.744	173	_		_	_	r r F F	_	F	2.169	0.542	236	F	_	F	_	FF	_	_	1.480	0.372	344		_	FN	_	r r F F	_	J F	1.080	0.271	474
ΝN	ΙF	N	F	F	F	N		0.736						FF					238					F F				0.368									1.076	0.269	476
ΝN	I F	Ν	F	F	F	F	2.926	0.731	175	Ν	F	F	N	F F	F	F	2.142	0.536	239	F	Ν	F	Ν	F F	F	F	1.463	0.366	350	F	F	F	l F	FF	F	F	1.071	0.268	478
ΝN	I F	F	N	Ν	N	Ν		0.727	176								2.133	0.533									1.455	0.364	352								1.067	0.267	480
ΝN							2.893	0.723	177					N N				0.531	241					N N				0.362	354			FF						0.266	482
NN	ı F	F	N	N	F	N F	2.876 2.860	0.719						N N				0.529	242					1 N				0.360	356 358			F F						0.264	484 486
NN							2.844	0.715						N F				0.527	243					N F				0.356	360			FF						0.263	488
ΝN							2.829	0.707	181					N F				0.522	245					N F				0.354	362			F F						0.261	490
ΝN	I F	F	Ν	F	F	Ν	2.813	0.703	182	Ν	F	F	F	N F	F	Ν	2.081		246	F	Ν	F	F	N F	F	N	1.407	0.352	364	F	F	FF	1	N F	F	N	1.041	0.260	492
ΝN							2.798	0.699	183					N F					247					N F				0.350	366			F F						0.259	494
ΝN							2.783	0.696	184					FN										FN				0.348	368			FF						0.258	496
NN							2.768	0.692 0.688	185 186					F N				0.514	249 250					F N				0.346	370 372			F F						0.257	498 500
NN							2.738	0.684	187					FN										FN				0.344	374			FF						0.255	500
NN	l F	F	F	F	N	N	2.723	0.681	188					F F				0.508	252					F F				0.340	376			F F						0.254	504
ΝN	I F	F	F	F	Ν	F	2.709	0.677	189	Ν	F	F	F	F F	N	F	2.024	0.506	253	F	Ν	F	F	F F	. N	l F	1.354	0.339	378	F	F	FF	- F	F F	ı	l F	1.012	0.253	506
ΝN	I F	F	F	F	F	Ν	2.695	0.674			_	_	_	F F	_	_		0.504						F F				0.337	380			F F						0.252	508
ΝN	I F	F	F	F	F	F	2.681	0.670	191	Ν	F	F	F	FF	F	F	2.008	0.502	255	F	Ν	F	F	FF	F	F	1.340	0.335	382	F	F	FF	- F	F F	F	F	1.004	0.251	510

Setup tips:

- If, without the interface, your speedometer reads much too fast, then you will most likely need to use application 3.
- If, without the interface, your speedometer reads about ½ what it should, then you will most likely need to use application 6.
- If your speedometer reads, but is just off, you will probably need application 1 or 2.

Trouble shooting guide

Problem	Possible Cause	Solution
Speedometer will not work at all.	Wrong output type.	Try switching from an oc to AC output or from an AC to oc output.
	No input signal.	Test for 1-20 volts AC at the signal in terminal with the wheels spinning.
	Grounding interference.	Make sure both the speed sensor and SGI-5 are grounded at the same point.
	No power to SGI-5.	Check the power and ground terminals on the SGI-5. Should be 11-15 V dc.
Speedometer will not read at low speeds	SGI-5 set for wrong input type.	If switch #1 is off, turn it on.
·	Speed signal is too low.	Check speed connections for ground problems or shorts. Test the ground connection between SGI-5 and sensor. Check for another device loading down
		the sensor.
Speedometer will read when the vehicle is sitting still.	Tach wire too close to speed signal wire.	Route the speed signal and tachometer wires away from each other to avoid interference.
-	Signal In and OUT wires routed too close.	Route the input and output wires away from each other to avoid feedback.
	Ground interference.	Make sure the speed sensor and SGI-5 are grounded together.

Tech Support

You can contact us with any questions you may have by phone, fax, or email.

4510 W. 61ST St. N. Sioux Falls, SD 57107 Phone: (605) 332-6513 FAX: (605) 339-4106

Email: dakotasupport@dakotadigital.com
On line: www.dakotadigital.com