SGI-5 E

UNIVERSAL SIGNAL INTERFACE UNIT

The Dakota Digital SGI-5 E is designed to recalibrate a speedometer signal or correct sinewave(AC)/squarewave(‘oc’) signal incompatibilities. Here are some typical applications:

1. Recalibrate a high speed (32,000ppm – 250,000ppm) signal for an OEM speedometer. **Do not use this unit to adjust a signal going to an anti-lock braking system.**
2. Recalibrate a low speed (32,000ppm – 4,000ppm) signal for an OEM or aftermarket speedometer or fuel injection computer.
3. Convert a high-speed signal found on newer GM transmissions down to a low speed signal to run a speedometer, cruise control, or fuel injection computer.
4. Convert an 8000ppm signal from an aftermarket signal generator to a 4000ppm or 2000ppm to run an OEM cruise control or fuel injection computer.
5. Convert a 16000ppm signal from a VDO Hall Effect signal generator to an 8000ppm, 4000ppm, or 2000ppm to run a cruise control or fuel injection computer.
6. Convert a 4000ppm signal from an OEM transmission speed sensor or ECM output to an 8000ppm signal for an aftermarket speedometer.
7. Convert an 8000ppm or 16000 ppm signal up to a high-speed 128,000ppm signal for a newer fuel injection computer.

SGI-5 E wiring connections:

Please Note: This is a technically advanced product and if not installed correctly may cause incorrect vehicle operation and/or damage to vehicle components.
Setup tips:
- If, without the interface, your speedometer reads much too fast, then you will most likely need to use application 3.
- If, without the interface, your speedometer reads about \(\frac{1}{2} \) what it should, then you will most likely need to use application 6.
- If your speedometer reads close to actual speed, you will probably need application 1 or 2.
- If, without the interface, your speedometer reads much too slow, then you will most likely need to use application 7.

Here is a general overview of the SGI-5 E’s control functions. Each of the different applications below will be described in detail starting on page 4 in this manual.

Setup
Set output mode: Select the output mode depending on your application.

\[\begin{align*}
H-H: & \quad \text{high speed in, high speed out. } \text{OUT3} \& 4 = \frac{1}{2} \text{ of OUT1, OUT5} = \frac{1}{4} \text{ of OUT1} \\
H-L: & \quad \text{high speed in, low speed out. } \\
& \quad \text{OUT3} = \frac{1}{16} \text{ of OUT1, OUT4} = \frac{1}{32} \text{ of OUT1, OUT5} = \frac{1}{64} \text{ of OUT1} \\
L-H: & \quad \text{low speed in, high speed out. } \text{OUT3} \& 4 = x16 \text{ of OUT1, OUT5} = x8 \text{ of OUT1} \\
L-L: & \quad \text{low speed in, low speed out. } \text{OUT3} \& 4 = \frac{1}{2} \text{ of OUT1, OUT5} = \frac{1}{4} \text{ of OUT1}
\end{align*} \]

1. Begin with the key off.
2. Press and hold the SET switch while turning the key on. The display will show the current version code.
3. Release the SET switch. The display will show “\#Ut”.
4. Press and release the SET switch. The current output mode will be shown, \(H-H, H-L, L-H, \) or \(L-L \). Press and release the INC switch to change the output mode. Press and release the SET switch to save it.

Advanced Setup
Change input signal settings: These settings are set automatically when the output mode is selected. If needed, they can be manually changed. The signal type can be changed between low voltage and high voltage signal types. The input pullup can be turned on or off.

\[\begin{align*}
S & : \quad L \text{ or } H \text{ } \text{on or off} \\
P & : \quad \text{on or off}
\end{align*} \]

1. Begin with the key off.
2. Press and hold the SET switch while turning the key on. The display will show the current version code.
3. Release the SET switch. The display will show “\#Ut”.
4. Press and release the INC switch until “ln” is shown.
5. Press and release the SET switch. Press and release the INC switch to select “S l9”, “P lU”, or “End”.
6. Press and release the SET switch. Press and release the INC switch to change the setting, press and release the SET switch to save it.
Calibration

Adjust while driving: To increase the speedometer reading, press and hold the + push button switch. To decrease the speedometer reading, press and hold the - push button switch. The calibration will only change when the vehicle is in motion and a speed signal is present.

Preset or adjust while parked: The calibration value can be set from 0.250 – 4.00. Values below 1.00 will display as three digits with no decimal point. (0.250 = 250)

1. Begin with the key off.
2. Press and hold the SET switch while turning the key on. The display will show the current version code.
3. Release the SET switch. The display will show “αικ”.
4. Press and release the INC switch until “ερλ” is displayed, then press and release the SET switch.
5. The display will show the ones digit of the currently stored calibration value. Press and release the INC switch to set this from 0.-4. for your desired calibration value.
6. Once finished, press the SET switch to move to the tenths digit. Press and release the INC switch until your desired value is shown.
7. Press the SET switch to move to the hundredths digit. Press and release the INC switch until your desired value is shown.
8. Press the SET switch to save the hundredths digit. If the value is 1.00 or higher the calibration value will be saved. The calibration set is done.
9. If the value is 0.99 or lower the thousands digit will now be set. Press and release the INC switch until the desired value is shown. Press the SET switch to save and finish.
10. The display should now show the next menu option, “Ιν”. Turn the key off
APPLICATION #1 (H-H)

Recalibrate a high speed (32,000ppm – 250,000ppm) signal for an OEM speedometer or engine/transmission computer. **Do not use this unit to adjust a signal going to an anti-lock braking system.** Anti-lock braking systems may not operate correctly or behave erratically due to the signal processing done to recalibrate the speed signal.

These speed sensors have a two-pin connector that plugs into the transmission or transfer case. One of the wires will be a ground and the other will be the signal wire. The wires will usually go up under the dash and into the speedometer, vehicle speed buffer, or engine/transmission computer. The signal wire (signal high) will need to be cut so the SGI-5 can recalibrate it. The sensor side of the wire will go to the SIGNAL IN terminal. The speedometer or buffer side will go to the OUT1 terminal. If the speedometer does not operate correctly after installation of the SGI-5 you may need to switch to OUT2 instead of OUT1. Connect the POWER terminal to a 12-volt accessory wire and connect the GROUND terminal to a good ground location.

You can determine how far the speedometer is off by having it checked with radar, a GPS unit, or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, you can use the push button switches to adjust the speedometer while you drive or use the following equation and then follow the instructions for calibration preset on page 3.

\[
\text{Actual speed} \times \text{current Cal ratio} = \text{new Cal ratio}
\]

speedometer reading

Diagram:

- 12V Accessory Power
- GROUND
- Sensor ground (if needed)
- Speed input signal
- Sensor 5V power (if needed)
- calibrated 'oc' output signal
- calibrated 'AC' output signal
APPLICATION #2 (L - L)

Recalibrate a low speed (32,000ppm – 4,000ppm) signal for an OEM or aftermarket speedometer or fuel injection computer.

Either two wire or three wire sensors can be recalibrated with this unit. Two wire sensors will typically have one wire as a ground and the other as the signal. Three wire sensors will have an additional power wire. You must first determine which wire is the signal. The signal wire will need to be cut so the SGI-5 E can recalibrate it. The sensor side of the wire will go to the SIGNAL IN terminal. The speedometer or computer side will go to the OUT1 terminal. If the speedometer does not operate correctly after installation of the SGI-5 E you may need to switch to OUT2 instead of OUT1. Connect the POWER terminal to a 12-volt accessory wire and connect the GROUND terminal to a good ground location.

You can determine how far the speedometer is off by having it checked with radar, a GPS unit, or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, you can use the push button switches to adjust the speedometer while you drive or use the following equation and then follow the instructions for calibration preset on page 3.

\[
\frac{\text{Actual speed}}{\text{speedometer reading}} \times \text{current Cal ratio} = \text{new Cal ratio}
\]

ppm values listed below are only valid after calibration is complete

12V Accessory Power
GROUND
Sensor ground (if needed)
Speed input signal
Sensor 5V power (if needed)

2000 ppm 'oc' output
4000 ppm 'oc' output
4000 ppm 'AC' output
calibrated 'oc' output signal
calibrated 'AC' output signal
APPLICATION #3 (H-L)

Convert a high-speed signal found on newer GM transmissions down to a low speed signal to run a speedometer, cruise control, or fuel injection computer.

These speed sensors have a two-pin connector on the transmission or transfer case. One of the pins will be a ground and the other will be the signal. The ground pin will go to the GROUND terminal along with the ground wire. The signal pin will go to the SIGNAL IN terminal. It is best to twist the signal and ground wires from the sensor around each other. This helps eliminate any electrical interference. If nothing else is connected to the speed sensor it does not matter which pin is used as the ground. Connect the POWER terminal to accessory power. The output connections will depend on your particular application. Here are some typical examples:

OUT3, 8000ppm AC: most aftermarket speedometers and cruise controls
OUT4, 4000ppm oc: most TPI computers and some OEM cruise controls
OUT5, 2000ppm oc: most TBI computers and some OEM cruise controls

You can determine how far the speedometer is off by having it checked with radar, a GPS unit, or following another vehicle going at a set speed. Once you know how far it is off at a certain speed, you can use the push button switches to adjust the speedometer while you drive or use the following equation and then follow the instructions for calibration preset on page 3.

Actual speed
--------------------------------- x current Cal ratio = new Cal ratio
speedometer reading

ppm values listed below are only valid after calibration is complete
APPLICATION #4 (L-L)

Convert an 8000ppm signal from an aftermarket signal generator to a 4000ppm or 2000ppm to run an OEM cruise control or fuel injection computer.

Either two wire or three wire sensors can be recalibrated with this unit. Two wire sensors will typically have one wire as a ground and the other as the signal. Three wire sensors will have an additional power wire. You must first determine which wire is the signal. The signal wire will be tapped into so the SGI-5 E can read it. The sensor signal wire will go to the SIGNAL IN terminal. Connect the POWER terminal to a 12-volt accessory wire and connect the GROUND terminal to a good ground location. If using a Jeep or Chrysler 3-wire, 8000ppm generator, the Sensor Power wire can be used to feed power to the POWER terminal. If nothing else is connected to a two wire sensor, then connect one wire to the GROUND terminal also. The output connections will depend on your particular application. Here are some typical examples:

OUT3, 4000ppm AC: most TPI computers and some OEM cruise controls
OUT4, 4000ppm oc: use this if OUT3 does not provide a good signal
OUT5, 2000ppm oc: most TBI computers and some OEM cruise controls

APPLICATION #5 (L-L)

Convert a 16000ppm signal from a Hall Effect signal generator to 8000ppm, 4000ppm, or 2000ppm to run a cruise control or fuel injection computer.

The Hall Effect sensor will have three wires. The white wire is the signal. The signal wire will be tapped into so the SGI-5 can read it. The sensor signal wire will go to the SIGNAL IN terminal. Connect the POWER terminal to a 12-volt accessory wire and connect the GROUND terminal to a good ground location. The output connections will depend on your particular application. The CAL ratio should be set to 0.500 as a starting point. Here are some typical examples:

OUT1, 8000ppm AC: most aftermarket cruise controls
OUT3, 4000ppm AC: most TPI computers and some OEM cruise controls
OUT4, 4000ppm oc: use this if OUT3 does not provide a good signal
OUT5, 2000ppm oc: most TBI computers and some OEM cruise controls
APPLICATION #6 (L - L)

Convert a 4000ppm signal from an OEM transmission speed sensor or ECM output to an 8000ppm signal for an aftermarket speedometer.

The speed sensors have a two-pin connector on the transmission or transfer case. One of the pins will be a ground and the other will be the signal. The ground pin will go to the GROUND terminal along with the ground wire. The signal pin will go to the SIGNAL IN terminal. It is best to twist the signal and ground wires from the sensor around each other. This helps eliminate any electrical interference. If nothing else is connected to the speed sensor it does not matter which pin is used as the ground. If you are picking up a signal coming out of the ECM there will be only one wire to the SIGNAL IN. Connect the POWER terminal to accessory power and the GROUND terminal to ground. The CAL ratio should be set to 2.000 as a starting point. Connect OUT1 to your aftermarket electric speedometer.

APPLICATION #7 (L - H)

Convert a 8000ppm or 16000ppm signal from a cable drive speed sensor to a 128000ppm signal for an OEM speedometer or ECM.

Either two wire or three wire sensors can be recalibrated with this unit. Two wire sensors will typically have one wire as a ground and the other as the signal. Three wire sensors will have an additional power wire. You must first determine which wire is the signal. The signal wire will be tapped into so the SGI-5 E can read it. The sensor signal wire will go to the SIGNAL IN terminal. Connect the POWER terminal to a 12-volt accessory wire and connect the GROUND terminal to a good ground location. If nothing else is connected to a two wire sensor, then connect one wire to the GROUND terminal also. The output connections will depend on your particular application. **With an 8000ppm signal the CAL ratio can start out at 1.00. If starting with a 16000ppm signal the CAL ratio should be set to 0.500 as a starting point.** Here are some typical examples:

- **OUT3, 128000ppm AC:** most common if OEM sensor connected to ECM directly
- **OUT4, 128000ppm oc:** most common if an ECM was fed by another electronic module

![Diagram](image-url)
Diagnostic Testing

The basic power up and operation can be verified with the display on the SGI-5E. The dot in the upper left corner will be on steady when the unit is powered up and not getting a speed signal. The dot will be flashing when a speed signal is present. When the key is first turned on, the display will show the current CAL value for a few seconds. If both switches are pressed at the same time the current, incoming speed signal frequency will be displayed. If the frequency displayed has a decimal point, then the reading is kHz, otherwise the reading is Hz.

Both the input and outputs can be tested with special diagnostic modes.

To test the outputs and speedometer reading while sitting still:
1. Begin with the key off.
2. Press and hold the SET switch while turning the key on. The display will show the current version code.
3. Release the SET switch. The display will show “αυℓ”.
4. Press and release the INC switch until “rEF” is shown.
5. Press and release the SET switch. The display will show “33” and be supplying a 33Hz signal on OUT1 and OUT2.
6. Press and release the INC switch to select “33”, “67”, “133”, or “533”. The output signal will change immediately.
7. Press and release the SET switch to quit.

To test the input while driving:
1. Begin with the key off.
2. Press and hold the INC switch while turning the key on. The display will show “τΩτ”.
3. Release the SET switch. The display will show “- - -”.
4. Anytime either switch is pressed the display will update and hold the frequency. This can be done while driving at a specific speed (like 30MPH or 60MPH) to determine the type of signal being fed to the SGI-5E. This information can be supplied to tech support to assist in setup and configuration of the unit.
5. The unit will remain in this mode until the key is turned off.
Trouble shooting guide

<table>
<thead>
<tr>
<th>Problem</th>
<th>Possible Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speedometer will not work. no lights on display.</td>
<td>No power to SGI-5 E.</td>
<td>Check the power and ground terminals on the SGI-5 E. Should be 11-15 V dc.</td>
</tr>
<tr>
<td>Speedometer will not work. dot on steady.</td>
<td>No input signal. SGI-5 E set for wrong input type. Grounding interference.</td>
<td>Test for 1-20 volts AC at the signal in terminal with the wheels spinning. Check output type setup. Make sure both the speed sensor and SGI-5 E are grounded at the same point.</td>
</tr>
<tr>
<td>Speedometer will not work. dot is flashing.</td>
<td>SGI-5 E set for wrong input type. Speed signal is too low.</td>
<td>Change input signal setup to LO. Check speed connections for ground problems or shorts. Test the ground connection between SGI-5 E and sensor. Check for another device loading down the sensor.</td>
</tr>
<tr>
<td>Speedometer will not work at low speeds</td>
<td></td>
<td>Change input signal setup to HI. Check speed connections for ground problems or shorts. Test the ground connection between SGI-5 E and sensor. Check for another device loading down the sensor.</td>
</tr>
<tr>
<td>Speedometer will read when the vehicle is sitting still.</td>
<td>Tach wire too close to speed signal wire. Signal In and OUT wires routed too close. Ground interference. Sensitivity set incorrectly</td>
<td>Route the speed signal and tachometer wires away from each other to avoid interference. Route the input and output wires away from each other to avoid feedback. Make sure the speed sensor and SGI-5 E are grounded together. Change input signal setup to HI.</td>
</tr>
<tr>
<td>Transmission does not shift properly, or not at all</td>
<td>Wired improperly Incorrect application Input pullup interfering</td>
<td>Contact technical support Change input pullup setup to OFF.</td>
</tr>
</tbody>
</table>

SERVICE AND REPAIR

DAKOTA DIGITAL offers complete service and repair of its product line. In addition, technical consultation is available to help you work through any questions or problems you may be having installing one of our products. Please read through the Troubleshooting Guide. There, you will find the solution to most problems. Should you ever need to send the unit back for repairs, please call our technical support line, (605) 332-6513, to request a Return Merchandise Authorization number. Package the product in a good quality box along with plenty of packing material. Ship the product by UPS or insured Parcel Post. Be sure to include the RMA number on the package, and include a complete description of the problem with RMA number, your full name and address (street address preferred), and a telephone number where you can be reached during the day. Any returns for warranty work must include a copy of the dated sales receipt from your place of purchase. Send no money. We will bill you after repair.

Dakota Digital Limited Lifetime Warranty

DAKOTA DIGITAL warrants to the ORIGINAL PURCHASER of this product that should it, under normal use and condition, be proven defective in material or workmanship for the lifetime of the original vehicle it was installed in, such defect(s) will be repaired or replaced at Dakota Digital’s option. This warranty does not cover nor extend to damage to the vehicle’s systems, and does not cover diagnosis, removal or reinstalation of the product. This Warranty does not apply to any product or part thereof which in the opinion of the Company has been damaged through alteration, improper installation, mishandling, misuse, neglect, or accident. Dakota Digital assumes no responsibility for loss of time, vehicle use, owner inconvenience nor related expenses. Dakota Digital will cover the return standard freight once the product has been evaluated for warranty consideration, however the incoming transportation is to be covered by the owner. This Warranty is in lieu of all other expressed warranties or liabilities. Any implied warranties, including any implied warranty of merchantability, shall be limited to the duration of this written warranty. No person or representative is authorized to assume, for Dakota Digital, any liability other than expressed herein in connection with the sale of this product.

⚠️WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov